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the Capacitance, Inductance, and

Characteristic Impedan;e of Rectangular Lines*

TSUNG-SHAN CHEN~, MEMBER, IRE

Summary—Thk paper determines the capacitance, inductance,

and characteristic impedance of rectangular lines by the method of
conf ormal transformation. In practical applications, such lines may

be used as transmission links of RF energy, as impedance-trans-
forming sections, or as components in electron tubes.

Formulas are given for the calculation of the parameters of

rectangular lines having the following characteristics: 1) The inner
conductor may have varying thickness compared with the depth of
the outer conductor. 2) The axes of the conductors may coincide or
may be dkplaced with respect to each other. 3) The edges of the
inner conductor may be rounded to lessen the electrical stress oc-

curring at sharp corners.

Excellent agreement has been obtained between the calculated
results and those found by use of the relaxation method, by duect

measurement of models, and by electrolytic tank measurement.

I. INTRODUCTION

T
HE rectangular line consists of a rectangular inner

conductor located symmetrically or asymmetri-

cally inside a rectangular hollow outer conductor

in a manner similar to a coaxial line. When the depth

of each conductor is equal to its width, the line becomes

a square line. The electric and magnetic fields in such a

geometry bear a close resemblance to those in a coaxial

line, especially for the case of a small inner conductor.

If the ratio of width to depth in both conductors is large

and the inner conductor forms a flat strip, the field pat-

terns in the rectangular line approach those existing in a

shieIded strip line. 1 Thus, the rectangular line, besides

being used to transmit RF energy, may serve as an

impedance transformer interposed between coaxial and

strip transmission lines.

This article concerns the determination of the ca-

pacitance, inductance and characteristic impedance of

rectangular lines where the inner conductor may be

thick or thin in comparison with the depth of the outer

conductor. If the spacings between the conductors are

small relative to their width and depth, the line paranl-

eters can be determined analytically even when the

inner conductor is placed asymmetrically with respect

to the outer one. For the purpose of reducing the elec-

trical stress in the annular region between conductors,

the edges of the inner conductor are rounded, and the

effect of rounding the corners on the line parameters is

evaluated.
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The parameters of rectangular lines calculated by

means of the formulas derived here agree very closely

with the results obtained by the relaxation method, by

direct measurement of full-sized models and by electro-

lytic tank measurement.

II. RELATION BETWEEN THE INTER-CONDUCTOR

C~P.ACIT~NCE AND THE CHARACTERISTIC

IMPEDANCE

The rectangular line is essentially a two-wire trans-

mission system along which TEM waves are propagat-

ing. The velocity of propagation, when dissipation is

neglected, equals the velocity of light, and is given by

v = l/(pe)l/~ = l/( Lc)l/2. (1)

The characteristic impedance of such a Iossless line is

given by

z = (-I,/ c)’/’ = I/(vC). (2)

In MKS units, the quantities used in (1) and (2) are as

follows :

Z = characteristic impedance of the line in ohms

L = inductance of the line in henries per meter

C= capacitance of the line in farads per meter

v = velocity of propagation in free space in meters per

second

= 2.998X 108 meters per second

p = permeability of free space

=47rx 10–7 = 1.257 XIO–G henry per meter

e = permittivity of free space

= l/(367r) X 10–g =8.854x 10–12 farad per meter.

Eq. (2) shows that the evaluation of the characteristic

impedance of rectangular lines reduces to the determina-

tion of the interconductor capacitance by experimental

or analytical means. The experimental determination of

the capacitance between the conductors can be accom-

plished by direct measurement of a full-scale model or

by mapping the equipotentials and flux lines existing

between appropriate electrode shapes placed in an elec-

trolytic tank.

The analytical process of obtaining the capacitance is

based upon the solution of Laplace’s equation for a

static field in two dimensions subjected to proper

boundary conditions. The solution involves the deter-

mination of the potential functions, the flux lines, and

the charge distribution on the electrodes. A numerical

result can be found for a specific problem by use of the
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relaxation method, z or analytical expressions may be

obtained from formal mathematics.

If the conductor geometries are simple, such as con-

centric spheres or parallel cylinders, Laplace’s equation

can be integrated formally, and boundary conditions

are applied to get explicit solutions. In other cases, the

two-dimensional differential equation can be solved by

means of conjugate functions, the real or imaginary

parts of which represent the potential or flLlx functions.

When the conductor boundary assumes a polygon, the

cletermination of the proper conjugated function can be

effected by means of the Schwarz-Christoffel trans-

formation.

111. RECTANGULAR LINE WITH SMALL SPACINGS

BETWEEN CONDUCTORS

Fig. 1 illustrates the configuration of a symmetrical

rectangular line. The exact determination of the ca-

pacitance by the method of conformal transformation

involves hypergeometric functions and four variable

parameters; the process of obtaining numerical results

would be so laborious that it has not been attempted.

If the sides of the conductors are large compared with

their spacings, the distorted fields at the two ends along

the s:..me side of the inner conductor do not interact,

and only one quarter of the cross section needs to be

transformed. The interconductor capacitance can then

be calculated as a combination of parallel-plate con-

densers formed by the walls of the conductors, plus ex-

cess capacitance caused by the disturbances of flux lines

close to the corners. In fact, this method is valid when-

ever the short side of the inner conductor exceeds the

spacing distances, as evidenced by the negligible amount

of flux distortion at points not far away from the bend

shown in Fig. 2.

A.. Line Capacitance

One corner of the line cross section assumes the shape

of a right-angle bend; two successive transformations

are necessary in this case as discussed in Appendix 1.3 d

The first process transforms the z-plane polygon into

the real axis of the t plane, and another transformation

from the w plane to the t plane relates the potentials of

the tmo conductors to values of t. The capacitance be-

tween the conductors is evaluated by letting z as well as

t take critical values which depend on the particular

problem.

In the L-shaped bend, the excess or fringing ca-

pacitance caused by the disturbance of flux lines eman-

z R. V. Southwell, ‘(Relaxation Methods in Engineering Science, ”
Oxford University Press, Oxford, Eng.; 1940. “Relaxation Methods
in Theoretical Physics, ” Oxford University Press, Oxford, Eng.,
VOI. I, 1946; vol. II, 1956.

3 J. J. Thomsonj “Recent Researches in Electricity and Mag-
netism, ” Oxford Umversity Press< Oxford, Eng.; 1893.

i J. H. Jeans, “The Mathematical Theory of Elect ricit y and Mag-
netism, ” Cambridge University Press, Cambridge, Eng., 5th ed.;
1925.
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Fig. l—The symmetrical rectangular liue,

Fig. 2—Distortion of electric fielcl at one corner
of the rectangular line.

sting at the vertical side is expressed by

farads per meter:, (3)

where g is the lateral spacing and h the vertical spacing.

Similarly, the equation for fringing capacitance pro-

duced by flux disturbance along half O( the horizontal

side is

[ —+ ’(+)arctan:lc,, = J log’24:2h2
ir

farads per meter. (4)

On the supposition that the conductor sides are large,

the. fringing capacitance depends only on the spacings

and not on the conductor dimensions. The ratios CdE

and Cfa/e are plotted in Fig. 3 as a function of lJ/g or

of g/h. The total capacitance between the conductors is

+Yo’%z+’(;)arctan+l

[
+ $ log

r 5iF+2(9arctan$l
farads per meter, (5)
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Fig. 3—Ratio of fringing capacitance to permittivity (Cjl/e, or
CfZ/E) as a function of the spacing ratio (g/k or /z/g).

where w and b are, respectively, the width and thickness

of the inner conductor. If g = h, both (3) and

to

“=:[:-’o”l= ‘27967

and the line capacitance is expressed by

70
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c= (7)

g

B. Line Inductance

The method of conformal transformation demon-

strates that the fringing effect caused by charge concen-

tration close to the edges of the inner conductor may be

accounted for by the addition of correction lengths to

the conductor sides. In F“ig. 2, half of the vertical side

of inner conductor should be increased by the amount

[
x+ glog

g’+ h’
— + 2/z arc tanf

4h2 1

=g~. (8)

7r e

(6) Fig. 4–Characteristic impedance and interconductor capacitance of
symmetrical rectangular lines (b/g = 1).

The extension in half of the horizontal side, Xz = hCfj/e,

can be obtained from (8) by interchanging g and h.

When the effective lengths of the sides are used in the

formula for calculating the inductance of parallel-plate

transmission lines, the inductance of the rectangular

line L is given by

L, LH
L= henries per meter.

Lv + LH
(9)

In this expression, Lv and LH are the inductances corre-

sponding to the vertical and horizontal parallel-plate

systems and are, respectively, given by

L.=+ Pg

[

> (lo)

b+~ glog
g’ + h’
~ + 2h arc tan ~

?r 1

and

LH=;
ph

2

[

. (11)
g2 + hz

w+— hlog — + 2g arc tank
T 4g2

g 1

,
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o
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Fig. 5—Characteristic impedance and interconductor capacitance of
symmetrical rectangular lines (b/g = 2).
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Fig. 6—Characteristic impedance and interconductor capacitance of
symmetrical rectangular lines (b/g = 3).
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C. Characteristic Impedance of a Rectangular Line

When the line is concentric as shown in Fig. 1, the

characteristic impedance can be obtained by use of (2),

in which the capacitance given by (5) has been em-

ployed. Then

376.62
z =

2(++;) +4(%+%) ohms” “2)

The rectangular line in which g = h has the character-

istic impedance is

376.62
z= ohms,.

2(b*\+ 2.23’

(13)

\gl

For a line having the dimensions, w= 0.218, b = 0.050,

and g = h = 0.050 inch, the line capacitance as deter-

mined from (7) is C = (10.72 +2.232)c = 12.952e

= 114.677 X 10–12 farad per meter. The inductance of

the line is equivalent to that of a parallel-plate system

which has a separation of 0.050 inch and an effective

width of

2(021’’+0050)+8(+)(+2)(005’
= 0.6438 inch.

7“’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’//’’’’’”/
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Fig. 7—Iloubly eccentric rectangular line.
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D. Doubly Eccentric Rectangular Line

“Ilhe inner, conductor may be displaced both hori-

zontal y and vertically with respect to the outer co rlduc-

tor so that the line becomes doubly eccentric, as shown

in Fig. 7. The capacitance between the conductors

becomes

+x%O’%$+2(3ar(’tana

71=1>2

[ z7+2(sarc’an3 “4)

g%2+ h7L2
+ ~ ~ log—

m=1,2 ~

Eight different terms of fringing capacitance are in-

volved in the last expression. There are also eight dif-

ferent correction lengths for the determination of the

line inductance. The characteristic impedance can be

written as

376.62
z=—

[’
~ : + ~ f + ~ ‘~’ cfl(gn, km) + ‘~’ cfdg., km)]

?Z=1,2 gn m=l,2 m m=l,2 ?n=l,2

(15)

The value of this inductance is as follows:

JL(O.05) ,a
L=-—– — – 9.755 x 10–8 henry per meter.

(0.6438 — 12.876 —

The velocity of wave propagation is Y)= 1 /(LC) 112

= 2.992X 108 meters per second, which is very close to

the accepted value of 2.998 X 108. The characteristic im-

pedance of the line is found to be 29.12 ohms.

By using relaxation calculation, W. N. Parker, of the

RCA Electron Tube Division, Lancaster, Pa., has found

the characteristic impedance of the same structure to be

27.8 ohms, while the result of electrolytic tank measure-

ment conducted under his direction is slightly less than

27 ohms. The characteristic impedance and inter-

conduc:tor capacitance of rectangular lines have been

calculated by means of (5) and (12) for a variety of di-

mensions; the results are plotted in Figs. 4–6.

The capacitance of a singly eccentric line having the

dimensions w= O.120, b= O.041, g= O.027, hl=O.019 and

hz = 0.0462 inch as calculated from (14) is

C= [6.312 +2.603 +3.034 +2(0.244 +0.342 +0.224 +0.382)]c

= 14.336c= 126.931 X 10–12 farad per meter.

After the computation of the correction lengths [rem

equations similar to (8), the component inductances

pertaining to the upper, lower, right and left paridlel-

plate guides are

L
p(o.o19)

= 0.1466p,
“pPer = 0.120 + 2(0.0046)

Llower =
/J(O.0462)

= 0.2975P,
0.120 + 2(0.0176)

L.i=ht = Lleft =
/J(O.027)

= 0.47%L.
0.041 + 0.0092 + 0.0C161
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The sum of the reciprocals of the component inductances

equals the reciprocal of the line inductance. This rela-

tion yields the value

L = K/14.357 = 8.756 X 10–8 henry per meter.

The velocity of propagation as obtained from

v = l/(LC)’/2 is 3 X 10–8 meters per second, and the char-

acteristic impedance from Z = l/v C’ is 26.2 ohms. The

capacitance of a full-sized model of such a line was

measured by R. Schumacher of RCA Electron Tube

Division, Lancaster, Pa., and found to be 128.9X 10–’2

farad per meter. This value of capacitance gives an

impedance of 25.9 ohms.

The preceding formulas for calculation of the parame-

ters of rectangular lines give accurate results when g and

h are, respectively, less than w and b. This conclusion is

substantiated by the flux mapping of the L-shaped bend

and by comparison of the result so calculated with the

exact solution. The flux distribution becomes almost

uniform at a distance from the corner equal to half the

spacing. If the thickness of the inner conductor is too

small, the distorted fields at the two ends of the short

side interfere, and the formulas so far derived do not

provide sufficient accuracy.

IV. RECTANGULAR LINES WITH THIN

INNER CONDUCTORS

Rectangular lines often occur where one side of the

inner conductor is smaller than the spacing between the

two conductors. The line capacitance in such cases has

been treated by J. D. Cockcroft5 as discussed in Ap-

pendix II, in which the Schwarz-Christoffel transforma-

tion is applied to one half of the conductor cross section.

The exact solution involves elliptic functions and theta

functions, and the determination of the variables to give

required conductor dimensions becomes very complex.

For a certain range of conductor spacings and sizes, the

expressions take comparatively simple form. The fic-

titious increase in the conductor side resulting from

charge concentration at one complete corner is given by

2(k)112
X=+ log

q’f’(1 – k)

-H)(%%J ’16)
where g = exp ( — mK’/K), K is the complete elliptic

integral to modulus k, and K’ is the complementary in-

tegral. The dimensions of the conductors are given by

[

l+k T

b/2=K— —
12k – 2kK ‘

‘J. D. Cockcroft, “The effect of curved boundaries on the dis-
tribution of electrical stress round conductors, ” ~. IEE, vol. 66, pp.
385409; April, 1928.

[1~=K/t!! ; h=;”
2k

The correction length for one corner is the essential

factor that enters into the determination of both the

capacitance and inductance of the line. Fig. 8 gives the

values of Cf(g,b) /c = X/g as a function of b/g for the

case g = h. It is to be noted that when the two sides of

the inner conductor are short, the fringing capacitance

for one corner is dependent on the short side b as well as

on the spacings g and k. The case that b/g tends to in-

finity corresponds to a very thick inner conductor; then

the fringing capacitance for one corner becomes twice

that given in (6), and the correction length in (16) sim-

plifies to

[ 1
X=g l–~logz.

T

Fig. 8—Radio of fringing capacitance to permittivity (C~/e) as a
function of the ratio of breadth of inner conductor to spacing
distance (b/g).

The capacitance between the two conductors per unit

length of line is

()

w- l-b
c=2e — + 4Cf (g, b), (18)

g

and the inductance of the line is determined from the

equation

L=
Kg

2(b + W) + 4x’

in which X is found from (16) or from Fig. 8.

acteristic impedance of the line is as follows:

(19)

The char-

376.62
z= ohms. (20)

. [WI+ b) 4Cdg, h)—

c-) ‘T-
For the line having the dimensions w= 0.218, b = 0.050,

and g = h = 0.050 inch, the fringing capacitance found

from Fig. 8 is 4Cf(g,h) =4( O.5537E) = 2.215E. The re-

sult calculated previously from the thick conductor

formula is 2 .232E, which is very close to the above exact

value.
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V. APPROXIMATE FORMUI,AS FOIR THIN

INNER CONDUCTORS

The expressions for the determination of the ca-

pacitance of the rectangular lines having thin inner

conductors and unequal spacings contain complex

combinations of elliptic functions, and are very difficult

to evaluate in applications. It becomes necessary to

derive approximate formulas yielding capacitance and

inductance values of an accuracy comparable to those

obtained from Cockcroft’s exact solutions.

.4. i’nner Conductor Oj- Zeyo TJ~~ck~tess

Tile capacitance between the conductors in Fig. 9(a)

can be divided into three parts: 1) capacitance of paral-

lel-plate capacitors formed by the horizontal walls of

the conductors, 2) capacitance due to fringing flux lines

from each end of the inner conductor to the opposite

horizontal walls of the outer one, and 3) fringing ca-

pacitance caused by the presence of the lateral walls of

the outer conductor.

n’: IFEE3
LL-:)-LJ- L,-M

REGIoN SIMULATING THE RECTANGULAR LINE
-- —1

AXIS OF SYMMETRY/i b;,+ w -+

(GROUND PoTENTIALI (.)

Fig. 9-(a) Rectangular line with inner Conduct?r :>f zero thickoess,
(b) rectangular Ilne wlt.h l~ner, co:ductor. of finite thickness, and
(c) approximate field dlstrlbutlon 111a shielded coupled-strip line
oprrating in the odd mode.

The first capacitance can be readily determined. In-

spect ion of Fig. 9(c) indicates that the disturbance of

flux 1‘nes close to the ends of the inner conductor is not

pronclunced; consequently, the second item of capaci-

tance can be neglected. The effect of sidewalls present in

the outer conductor is the same as that obtained on the

addition of a series of plates similar to the inner con-

ductor spaced at 2g between their ends, as shown in

Fig. 9(c). The dotted lines are at the same potential as

the two infinite plates and can be taken to represent the

sidewalls of the rectangular line. From the character of

the flux distribution, it can be seen that because of the

sidewalls, the fringing capacitance equals that between

two coupled, odd-mode strips located midway between

two infinite parallel plates. CohnG gives the capacitance

B S. B. Cohn, “Shielded coupled-strip transmission line, ” IRE
~R.4xs. ON MICROWAVE THEORY .4ND Techniques, vol. iVtTT-3.
pp. 29–38; October, 1955.

as follows:

Cfoo:)=:’o’(’+coth’?)’21)
where d is the spacing between the infinite plates. The

line capacitance is given by

and the characteristic impedance of the line is

376.62
z= ———

[

ohms, (23)

(
4 ;+~log I+coth:

T )]/

If the dimensions of a rectangular line are w== 0.300,

d= O.200, b=O, and g=k=O.100 inch, the capacitance

as found from Fig. 8 becolmes 6c+4(0.46) e ==7.84(,

whereas (22) gives C=6e+l.88e=7.88c.

B. Inner Conducto~ of Finite Tlricknes:i

When the thickness of the inner conductor is a ppreci-

able, but is less than d/3, the line capacitance can be

determined by the method adopted for the case of the

infinitely thin inner conductor. However, the fringing

capacitance caused by the sidewalls should be corrected

for the finite thickness of the inner conductor in

Fig. 9(b).

Consider a semi-infinite plate of thickness b located

in the middle of two infinite parallel plates which are

separated at a distance d, as shown lby Fig. 15(a) in

Appendix III. The semi-infinite plate is charged to a

potential 17, and the two infinite plates are at ground

potential. The fringing capacitance for one corner of the

semi-infinite plate as obtained by Tholmson is3

Cf=(:)=+%o’?

b(2d -- b)

1
+ log ~lG . (2-1)

If the thickness of the middle plate is reduced to zero,

the fringing capacitance at one corner is then expressed

by

Cf(0) = >10’2 = 0.4407E. (25)
r

When applied to the rectangular line, the fringing ca-

pacitance for each corner of the inner conductor can be

approximated by

“(:’%)=c’+%%’?”’26)
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Fig. 10—Fringing capacitance at one corner for shielded semi-infinite
plate and the correction factor for the thickness of the semi-
infinite plate.

The term Cj(b/d) /e along with the ratio Cf(b/d)/Cf (0)

is plotted in Fig. 10 as a function of b/d. The complete

expressions for the line capacitance and characteristic

impedance are, respectively

4EW

[

2d–b
c= ---+4; ~Iog T

b(2d – b)l ‘“g(’+c”th:)

‘7..hhbd
“-~-J

I

Fig. 1l—Electric and magnetic fields in a rectangular
line with narrow inner conductor. .

VI. RECTANGULAR LINES WITH NARROW

INNER CONDUCTORS

When the flat inner conductor is not more than one-

quarter as wide as the outer conductor, the effect of the

presence of sidewalls may be ignored. T Thus, in Fig. 11,

the fringing field at each end of the inner conductor has

the same character as that occurring in a semi-infinite

plate situated between two infinite parallel plates. If

the rectangular line has a narrow inner conductor of

negligible thickness, the expression for characteristic

impedance, when (25) is used, should be the following:

1
z= ohms.

( )

(29)

4, :+~log2 v
7r

+ log -—
(d – b)~j log 2 ‘

(27) when the inner conductor of the line has finite thick-

ness, then by using (24),

1
z =

{

d
ohms.

~+~
[

2d–b b(2d – b)
46 — log —

d–b ~ d–b
+ log

b 1}(d – b)’ v

and

376.62
z=

4
[

( ,f)cdw] “m’ ’28)
fi+~cfo o—

e

A rectangular line has the description, w = 0.218,

b= O.050, d= O.150, and g=h=O.050 inch. Eqs. (21),

(24)-(26) yield, respectively, Cto(O, 2g/d) = 0.526c,

C,(b/d) = 0.839e, C~(0) = 0.4407e, and Cj(b/d, 2g/d)
= 1.002e. The total capacitance of the line is C= 8.726

+4(1.002~) = 12.7286, compared with the previously ob-

tained results of 12.952e and 12.935 e farads per meter.

A second line has the dimensions w = 0.180, b = 0.030,

g = h = 0.060 inch. The use of Fig. 8 gives the result:

C = 2(0.180 + 0.030) e/O.060 + 4(0.548)c = 9.1926.

The preceding formulas give Cfo(O, 2g/d) = 0.4954c,

C~(b/d) = 0.694c, C~(0) = 0.4407e, and Ci(b/d, 2g/d)

=O.781 e. These values give a total capacitance:

C = 2e(0.180)/O.06 + 4(0.781)e = 9.124e.

The capacitance and inductance

readily evaluated.

(30)

of such lines can be

VII. INNER CONDUCTOR WITH ROUNDED CORNERS

In applications involving high voltages, the annular

space between the conductors may be subjected to high

electrical stress. The stress at the sharp corners of the

inner conductor can reach as much as six times the

mean value.5 To alleviate this stress concentration, the

edges of the inner conductor are rounded. Cockcroft has

treated the case when the spacings g and h are equal and

are small compared with conductor sides, and has found

that the electrical stress is considerably reduced by

rounding the edges, but the change in capacitance is

insignificant. The fringing capacitance at one corner is

plotted in Fig. 12 in the form Cf/e, which is equivalent

to X/g. The fringing effect decreases with the increase

in the ratio of the radius of curvature R to the spacing

g. The process of conformal representation for this case

is given in Appendix IV.

7 R. H. T. Bates, “The characteristic impedance of the shielded
slab line, ” IRE TRANS. ON MICROWAVE THEORY AND TECHNIQUES,
vol. MTT-4, pp. 28–33; January, 1956.
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‘06Qa3EEEEE1FRINGING_C:PACI TANCE FOR SHARP CORNER C+= 0,558
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~
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0,5

Fig. 12—Fringing capacitance for one round corne~ to permittivity
as a function of the ratio of the corner radius to conductor
spacing.
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The fictitious increase in length of the sides may be +-=
utilized to calculate the capacitance ancl inductance of

the line as follows:

I —u

t=-m
.—

v t=o

C = 2E(W + b + 2X)/’g,

(c) w-PLANE

(31)
Fig. l.’-Conforrnal transformation of the L-shaped bend.

and

L = pg/(2w + 2b + 4X). (32) which, upon integration and use of the boundary con-

ditions, becomes

The characteristic impedance can next be calculated v

from (2).
Zw=u+iv=-logt. (35)

T

APPENDIX I To integrate (33), let

L-SHAPED BEND X = (t – 1)1/2(f – a)–ll’, (36)

When the sides of the conductors are large compared and obtain

with the spacings between them, one quarter of the

cross section is to be considered. This portion of the z = — 2.41(1/a)li~ arc tan (alj~X) + .41 log ~., (37)

cross section then constitutes a right-angled bend as

shown in Fig. 13(a) and forms the polygon in the in which point E is chosen as the origin in the z plane.

z-plane bounded by the lines ABC and DEF, which are Consideration of the values of t and X at point B leads

maintained at potential V and zero, respectively. It can to the relations

be assumed that t = – cc at a distant point on .4B,

t= –-a at B, t=O at a distant point on BC, and t= 1 at

E. The internal angles of the polygon are 7r/2 at B, zero

at C, and 37r/2 at -E. The quantity a has to be de-

termined from the geometry of the system. The

Schwarz-Christoffel transformation which turns the

boundary of the polygon into the real axis in the t plane,

shown in Fig. 13(b), is

dz
— = .41(t – 1)1/’(t – O)-’(t – a)-’/x. (33)
dt

The diagram in the w plane, shown in Fig. 13(c), con-

sists of the real axis and a line parallel to it. The internal

angle of the polygon is at t = O, and is equal to zero. The

transformation which turns this diagram into the real

axis of the t plane is

g = AIT, h = .417r(l/a)112, (h/g)z = l/a, (38)

Let P be a remote point on the line EF. The total charge

on the strip EP per unit length in the direction normal

to the plane of the paper is given by 3‘+

0[QBP . : e log (a + 1) + 2(1/a)l/~ arc tan al/n
z-

EF

1
–-210g 2+-z .

If the flux lines were not disturbed, the charge on the

strip EP would be (EP) c V/g, which is the last term in

the preceding expression. The first three terms repre-

sent the excess charge caused by the f~ux disturbances.

When the excess charge is divided by Iz and the rela-

tions in (38) are used, the fringing capacitance Cfl is

obtained as

da)
— = 131(t – l)o(t – 0)–yt – a)o, (34)
dt r

Cfl = ~ log
T %,y+’(:)arc’an+l ‘3’)
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Similarly, the fringing capacitance associated with the

horizontal side Cjz may be obtained from (39) by inter-
tz-l/kF

changing g and h.

APPENDIX II

RECTANGULAR LINE HAVING THIN INNER CONDUCTOR

If the two sides of the rectangular line are short com-

pared with the conductor spacings, half of the cross

section shown in Fig. 14 should be considered. The ap-

propriate transformations are5

s (1–j2)l/2 dt
z=

(1 – k2t2)’/2 (1 – k2 sna. ~’) ‘
(40)

and G<

(L -,)

E +=@

4 I

9;

&--It=o
ID C

1
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1
1
k+*
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+b—————

/k, na +=

f=l

—h—

ksna

September

I= I/k

1 U3sn a ‘/ Fig. 14—Transfornlation for half cross section

W=u+jv=— log (41) of a rectangular line.

T
(

1
—- l-t\

Here, k is the modulus of elliptic functions, sn a is one of

the Jacobian elliptic functions, and a is a complex

quantity.

These transformations yield the line capacitance as

.— —
C = 4(AC + CD + X)/g farad per meter, (42)

in which X is the correction for the sides at one corner

resulting from the field distortion and is given by an

expression comprising elliptic and other higher func-

tions.

For the case a= K –jK’, and for values of k from 0.5

to unity, the equation for X reduces to (16), and g does

not differ substantially from h, The fringing capacitance

at one corner has been plotted in Fig. 8 as a function of

b/g in the form

cf/E = x/g. (43)

APPENDIX III

SHIELDED SEMI-INFINITE PLATE

Fig. 15(a) shows a semi-infinite plate of finite thick-

ness and rectangular cross section placed midway be-

tween two infinite plates. The two parallel infinite

plates are at zero potential, and the semi-infinite plate

is at potential V. The values of t chosen at the corners of

the z-plane polygon are indicated in Fig. 15, both (a) and

(b). The internal angles of the polygon are O when

t = + 1, and 3r/2 when t = ~ a. The differential equation

which transforms the boundary of the z diagram into the

real axis of the t plane is$

The diagram in the w plane consists of one straight

line and the two sides of another parallel line, as shown

in Fig, 15(c). The internal angles occur at points corre-

sponding to t= — 1 and t= 1 and are both zero. The

transformation which turns the diagram in the w plane

G POTENT IAL=O

t.+m \z+-l-

:~”

7+=+-1- 1-

.-. Ld
+=-l

1
t:–m

B–-
+ z-l

(c) Z- PLANEO

--k----t..m +=–1 tz–. +=+. +=+1 +.+@

(b) i–PLANE

t=l t .+-y

+.–cc

(c) w-PLANE

Fig. 15—Schwarz-Christoffel transf orrnation for
shielded semi-infinite plate.

to the real axis in the t plane is

dw
= B,(t + 1)–l(t – 1)–’.

Z-
(45)

After (44) and (45) are integrated and the integration

constants are determined by application of the bound-

ary conditions, the fringing capacitance for one corner

of the selni-infinite plate is given by (24).

APPENDIX IV

INNER CONDUCTOR WITH ROUNDED EDGES

The case considered is that of two coaxial rectangular

conductors, the edges of the inner conductor being

rounded. A potential difference r is maintained between

the conductors, each of which forms an equipotential

surface. The distances g and h are assumed to be small

compared with the sides AB and CD of Fig. 16(a), so

that the z-plane polygon consists of one corner, the

sides of which are assumed to extend to infinity. The
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Fig. 16—ConformaI transformation of a rounded bend.

differential equation which transforms the polygon

ABCDEGA in the z plane to the upper half of the

t plane is5

dz _A1(t+l)+?zdt-o

(t – aJ(t – tzJ’/2 “ (46)
z“

The two terms in the numerator have the effect of

turning the path of z through 90° as Y in the t plane of

Fig. 16(b) varies between – I and +1. If the factor tit

is chosen as

m = (h + l)l@/(bl — 1)1’2, (47)

then the variation of the electric field intensity is uni-

form along the curved boundary BC.

It is necessary to put an electric field into the t plane

such that from t = — ~ to t= aI,the horizontal line is at

one potential and the horizontal line from t = al to

t = + m at another potential. This is accomplished by

opening up the two parallel lines in Fig. 16(c) to form

the two lines AD and EG in the t plane. The transforma-

tion is
dw B1

.— . (48)
z t–al

After integration and evaluation of the total charge

on the inner conductor as z takes infinite real and imagi-

nary values; that is, as i varies from — co to +al, the

total charge per unit length is given by

[

(0/4 + x,)+ (OD + x,)
Q=m

1
(49)

g ?l–’

where 0.4 and OD are, respectively, half the depth and

half the width of the inner conductor. The expressions

for the correction lengths Xl and X, haV’e been derived

by Cockcroft, and the excess or fringing capacitance foz-

one rounded corner is found from

(50)

The most usual case is for g = lz. Under this condition,

bl – al bl+l al+l
——— —— = PH2, (51)
al—l b,–l= bl – al

and

g = h = T(1 +W). (52)

The radius of the round corner is given by

l+f
R= 2arctani–m log-”-~ (53)

l–f

in which the expressions for f and i are, respectively,

)
1/2

f=(~
2

()

1/2
and i = _——

bl–1 “

The expression for the total correction length and the

fringing capacitance for one rounded corner reduce to

()1-Y = 2r + 4(m – 1) arc tan — – 2(1 + m) log ‘1
‘m

+ 2(1 + m.) log 2bl – 2m log (b, + 1’)

— 2 log (bl – 1), (54)

and

&
Cf=—” (55)

g

The values of Cf/e = X/g are plotted in Fig. 12 as a

function of R/g. In general, when g is not equal to h, the

results are far more complex than those given by the

previous equations and the curved boundary at the

corner of the inner conductor does not assume a circular

form.
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