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Characteristic Impedance of Rectangular Lines*
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Summary—This paper determines the capacitance, inductance,
and characteristic impedance of rectangular lines by the method of
conformal transformation. In practical applications, such lines may
be used as transmission links of RF energy, as impedance-trans-
forming sections, or as components in electron tubes.

Formulas are given for the calculation of the parameters of
rectangular lines having the following characteristics: 1) The inner
conductor may have varying thickness compared with the depth of
the outer conductor. 2) The axes of the conductors may coincide or
may be displaced with respect to each other. 3) The edges of the
inner conductor may be rounded to lessen the electrical stress oc-
curring at sharp corners.

Excellent agreement has been obtained between the calculated
results and those found by use of the relaxation method, by direct
measurement of models, and by electrolytic tank measurement.

I. INTRODUCTION

conductor located symmetrically or asymmetri-

cally inside a rectangular hollow outer conductor
in a manner similar to a coaxial line. When the depth
of each conductor is equal to its width, the line becomes
a square line. The electric and magnetic fields in such a
geometry bear a close resemblance to those in a coaxial
line, especially for the case of a small inner conductor.
If the ratio of width to depth in both conductors is large
and the inner conductor forms a flat strip, the field pat-
terns in the rectangular line approach those existing in a
shielded strip line.! Thus, the rectangular line, besides
being used to transmit RF energy, may serve as an
impedance transformer interposed between coaxial and
strip transmission lines.

This article concerns the determination of the ca-
pacitance, inductance and characteristic impedance of
rectangular lines where the inner conductor may be
thick or thin in comparison with the depth of the outer
conductor. If the spacings between the conductors are
small relative to their width and depth, the line param-
eters can be determined analytically even when the
inner conductor is placed asymmetrically with respect
to the outer one. For the purpose of reducing the elec-
trical stress in the annular region between conductors,
the edges of the inner conductor are rounded, and the
effect of rounding the corners on the line parameters is
evaluated.

r I Y HE rectangular line consists of a rectangular inner

* Received by the PGMTT, April 11, 1960; revised manuscript
received, May 31, 1960.

1 Electron Tube Div., Radio Corp. of America, Harrison, N. J.

I R. M. Barrett, “Microwave printed circuits—a historical sur-
vey,” IRE Trans. oN MicrRowavE THEORY AND TECHNIQUES, vol.
MTT-3, pp. 1-9; March, 1955.

The parameters of rectangular lines calculated by
means of the formulas derived here agree very closely
with the results obtained by the relaxation method, by
direct measurement of full-sized models and by electro-
lytic tank measurement.

II. ReELATION BETWEEN THE INTER-CONDUCTOR
CAPACITANCE AND THE CHARACTERISTIC
IMPEDANCE

The rectangular line is essentially a two-wire trans-
mission system along which TEM waves are propagat-
ing. The velocity of propagation, when dissipation is
neglected, equals the velocity of light, and is given by

v=1/(u'* = 1/(LC)'". (1

The characteristic impedance of such a lossless line is
given by

Z = (L/O)'?2 = 1/(xC). (2)

In MKS units, the quantities used in (1) and (2) are as
follows:

Z =characteristic impedance of the line in ohms
L =inductance of the line in henries per meter
C=capacitance of the line in farads per meter
v=velocity of propagation in free space in meters per
second

=2.998 X 10® meters per second
u=rpermeability of free space

=47 X1077=1.257X10~% henry per meter
e =permittivity of free space

=1/{36m) X107°=8.854X 1072 farad per meter.

Eq. (2) shows that the evaluation of the characteristic
impedance of rectangular lines reduces to the determina-
tion of the interconductor capacitance by experimental
or analytical means. The experimental determination of
the capacitance between the conductors can be accom-
plished by direct measurement of a full-scale model or
by mapping the equipotentials and flux lines existing
between appropriate electrode shapes placed in an elec-
trolytic tank.

The analytical process of obtaining the capacitance is
based upon the solution of Laplace’s equation for a
static field in two dimensions subjected to proper
boundary conditions. The solution involves the deter-
mination of the potential functions, the flux lines, and
the charge distribution on the electrodes. A numerical
result can be found for a specific problem by use of the
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relaxation method,? or analytical expressions may be
obtained from formal mathematics.

If the conductor geometries are simple, such as con-
centric spheres or parallel cylinders, Laplace’s equation
can be integrated formally, and boundary conditions
are applied to get explicit solutions. In other cases, the
two-dimensional differential equation can be solved by
means of conjugate functions, the real or imaginary
parts of which represent the potential or fux functions.
When the conductor boundary assumes a polygon, the
determination of the proper conjugated function can be
effected by means of the Schwarz-Christoffel trans-
formation.

J1I. RECTANGULAR LINE WITH SMALL SPACINGS
BerweEeN CONDUCTORS

Fig. 1 illustrates the configuration of a symmetrical
rectangular line. The exact determination of the ca-
pacitance by the method of conformal transformation
involves hypergeometric functions and four variable
parameters; the process of obtaining numerical results
would be so laborious that it has not been attempted.
If the sides of the conductors are large compared with
their spacings, the distorted fields at the two ends along
the same side of the inner conductor do not interact,
and only one quarter of the cross section needs to be
transformed. The interconductor capacitance can then
be calculated as a combination of parallel-plate con-
densers formed by the walls of the conductors, plus ex-
cess capacitance caused by the disturbances of flux lines
close to the corners. In fact, this method is valid when-
ever the short side of the inner conductor exceeds the
spacing distances, as evidenced by the negligible amount
of flux distortion at points not far away from the bend
shown in Fig. 2.

A. Line Capacitance

One corner of the line cross section assumes the shape
of a right-angle bend; two successive transformations
are necessary in this case as discussed in Appendix 1.3+
The first process transforms the z-plane polygon into
the real axis of the ¢ plane, and another transformation
from the w plane to the ¢ plane relates the potentials of
the two conductors to values of £. The capacitance be-
tween the conductors is evaluated by letting z as well as
¢ take critical values which depend on the particular
problem.

In the L-shaped bend, the excess or fringing ca-
pacitance caused by the disturbance of flux lines eman-

2 R, V. Southwell, “Relaxation Methods in Engineering Science,”
Oxford University Press, Oxford, Eng.; 1940. “Relaxation Methods
in Theoretical Physics,” Oxford University Press, Oxford, Eng.,
vol. I, 1946; vol. 11, 1956.

3 J. J. Thomson, “Recent Researches in Electricity and Mag-
netism,” Oxford University Press, Oxford, Eng.; 1893.

+ ], H. Jeans, “The Mathematical Theory of Electricity and Mag-
netism,” Cambridge University Press, Cambridge, Eng., 5th ed.;
1923.
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Fig. 1—The symmetrical rectangular line.
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Fig. 2—Distortion of electric field at one corner
of the rectangular line.

ating at the vertical side is expressed by

€ g+ h g
Cn= —[log — + 2 (—- arc tan ~—:|
T 4h? g h

farads per meter, (3)

where g is the lateral spacing and % the vertical spacing.
Similarly, the equation for fringing capacitance pro-
duced by flux disturbance along half of the horizontal

side is :

€ g+ g h
Cpo = —| log + 2| —)arctan —
™ 4g? h g
farads per meter. (4)
On the supposition that the conductor sides are large,
the. fringing capacitance depends only on the spacings
and not on the conductor dimensions. The ratios Csi/e

and Cp/e are plotted in Fig. 3 as a function of 2/g or
of g/h. The total capacitance between the conductors is

c-2<w+b>
=2t

4 24+ h? h .
+ = l:log giw + 2 <”> arc tan _]g; }

T 4h? g

4e g+ n g h-
+ —[log + 2| —)arctan —

7r 4g° h g.

farads per meter, (5)
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. 3—Ratio of fringing capacitance to permittivity (Csi/e, or
Cy2/€) as a function of the spacing ratio (g/k or k/g).

where w and & are, respectively, the width and thickness
of the inner conductor. If g=#, both (3) and (4) reduce
to

€ m .
Cy = ~[— — log 2] = 0.279, (6)
L2
and the line capacitance is expressed by
2¢(w + b
I G Py %
g

.B. Line Inductance

The method of conformal transformation demon-
strates that the fringing effect caused by charge concen-
tration close to the edges of the inner conductor may be
accounted for by the addition of correction lengths to
the conductor sides. In Fig. 2, half of the vertical side
of inner conductor should be increased by the amount

1 g+ g:l Cr
Xi=—]glog——+ 2harctan — | = g — -

™ €

(8)

The extension in half of the horizontal side, Xo=hCp/¢,
can be obtained from (8) by interchanging g and .
When the effective lengths of the sides are used in the
formula for calculating the inductance of parallel-plate
transmission lines, the inductance of the rectangular
line L is given by

L, Ly

L = ——— henries per meter.
Lv + LH

(9)

In this expression, L, and Ly are the inductances corre-
sponding to the vertical and horizontal parallel-plate
systems and are, respectively, given by

1
Ly=— — #e . (10)
2 b+2|:l ETR L harct g}
—| glog ——— arc tan —
T 8708 452 /3
and
1 . uh
Ly = — (11)
2 2 g2+ At
w+—~|:hlog———|—2garctan4:’
™ 4g? g
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Fig. 4—Characteristic impedance and interconductor capacitance of
symmetrical rectangular lines (b/g=1).

70’7

TTTIITT,

CHARACTERISTIC IMPEDANCE,Z, IN ohms

0
%2 04 06 08 10 12 14
RATIO OF SPAGING DISTANCES %

o
®
N
RATIO OF INTER-CONDUCTOR CAPACITANCE TO PERMITTIVITY( %)

Fig. 5—Characteristic impedance and interconductor capacitance of
symmetrical rectangular lines (b/g=2).
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Fig. 6—Characteristic impedance and interconductor capacitance of
symmetrical rectangular lines (b/g=3).
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C. Characteristic Impedance of o Rectangular Line

When the line is concentric as shown in Fig. 1, the
characteristic impedance can be obtained by use of (2),
in which the capacitance given by (5) has been em-
ployed. Then :

376.62
b C C
(G
g h € €

The rectangular line in which g=7% has the character-
istic impedance is

Z =

(12)

ohms.

376.62
Z = ohms.

b
2<—ﬂ>+ 2.232
g

(13)

For a line having the dimensions, w=0.218, 6 =0.050,
and g=#4=0.050 inch, the line capacitance as deter-
mined from (7) is C = (10.7242.232)e = 12.952¢
=114.677 X 1072 farad per meter. The inductance of
the line is equivalent to that of a parallel-plate system
which has a separation of 0.050 inch and an effective
width of

1
2(0.218 + 0.050) + 8 (—) <% — log 2) (0.05)

™

= 0.6438 inch.

Chen: Capacifance, Inductance, and Characteristic

Impedance of Rectangular Lines 513

777 -

' i
L—ql ‘4‘* W

i
L

Fig. 7—Doubly eccentric rectangular line.

D. Doubly Eccentric Rectangular Line

The inner, conductor may be displaced both hori-
zontally and vertically with respect to the outer conduc-
tor so that the line becomes doubly eccentric, as shown
in Fig. 7. The capacitance between the conductors
becomes

c <b n b+w+w>
= ef —- — - —
g1 82 Iy hy

&'+ k' fom gn
I:log + 2| —)arctan —
4hn? gn -

i n2 + hmz n hm
+ i|:1og i —+ 2 <§_> arc tan —:| (14)
2 T 4gn2 hm &n

Eight different terms of fringing capacitance are in-
volved in the last expression. There are also eight dif-
ferent correction lengths for the determination of the
line inductance. The characteristic impedance can be
written as

376.62

IR 3 3+i[

n=1,2 &n m=1,2 hm €

The value of this inductance is as follows:

1(0.05) i
= = = 9.755 X 1078 henry per meter.
0.6438 12.876

The velocity of wave propagation is v=1/(LC)Y?
=2.992 X 10% meters per second, which is very close to
the accepted value of 2.998 X108, The characteristic im-
pedance of the line is found to be 29.12 ohms.

By using relaxation calculation, W. N. Parker, of the
RCA Electron Tube Division, Lancaster, Pa., has found
the characteristic impedance of the same structure to be
27.8 ohims, while the result of electrolytic tank measure-
ment conducted under his direction is slightly less than
27 ohms. The characteristic impedance and inter-
conductor capacitance of rectangular lines have been
calculated by means of (5) and (12) for a variety of di-
mensions; the results are plotted in Figs. 4-6.

n=1,2

> Crilgn, b)) + 25 Cralgus b

m=1,2

. : (15)
Pl

The capacitance of a singly eccentric line having the
dimensions w=10.120, 6=0.041, ¢=0.027, £, =0.019 and
he=0.0462 inch as calculated from (14) is

C=[6.312+2.603+3.034+2(0.244+0.3424-0.224+0.382) e
=14.336e=126.931 10712 farad per meter.

After the computation of the correction lengths from
equations similar to (8), the component inductances
pertaining to the upper, lower, right and left parallel-
plate guides are

4(0.019)
Lupper = = 01466[.1,,
0.120 -+ 2(0.0046)
0.0462
Llower = M( ) = 02975”,
0.120 + 2(0.0176)
2(0.027)
Lright = Lleft = = 0.479[1.

0.041 -+ 0.0092 4- 0.0061
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The sum of the reciprocals of the component inductances
equals the reciprocal of the line inductance. This rela-
tion yields the value

L = u/14.357 = 8.756 X 107% henry per meter.

The wvelocity of propagation as obtained {rom
v=1/(LC)"*is 33X 10~8 meters per second, and the char-
acteristic impedance from Z=1/9C is 26.2 ohms. The
capacitance of a full-sized model of such a line was
measured by R. Schumacher of RCA Electron Tube
Division, Lancaster, Pa., and found to be 128.9X 1072
farad per meter. This value of capacitance gives an
impedance of 25.9 ohms.

The preceding formulas for calculation of the parame-
ters of rectangular lines give accurate results when g and
k are, respectively, less than w and b. This conclusion is
substantiated by the flux mapping of the L-shaped bend
and by comparison of the result so calculated with the
exact solution. The flux distribution becomes almost
uniform at a distance from the corner equal to half the
spacing. Ii the thickness of the inner conductor is too
small, the distorted fields at the two ends of the short
side interfere, and the formulas so far derived do not
provide sufficient accuracy.

IV. RECTANGULAR LINES witH THIN
INNER CONDUCTORS

Rectangular lines often occur where one side of the
inner conductor is smaller than the spacing between the
two conductors. The line capacitance in such cases has
been treated by J. D. Cockcroft® as discussed in Ap-
pendix II, in which the Schwarz-Christoffel transforma-
tion is applied to one half of the conductor cross section.
The exact solution involves elliptic functions and theta
functions, and the determination of the variables to give
required conductor dimensions becomes very complex.
For a certain range of conductor spacings and sizes, the
expressions take comparatively simple form. The fic-
titious increase in the conductor side resulting from
charge concentration at one complete corner is given by

1 2(E)12
g~
2% g1 — )

KN\ 1+ k
(x-S (A,
2 2k 2kEK
where g=exp (—7K'/K), K is the complete elliptic

integral to modulus £, and K’ is the complementary in-
tegral. The dimensions of the conductors are given by

(16)

14 %
b/2 = K|:—+— _ _L:"
2k 2EK

_5]. D. Cockeroft, “The effect of curved boundaries on the dis-
tribution of electrical stress round conductors,” J. IEE, vol. 66, pp.
385-409; April, 1928,
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g=Kﬂ—~; =
2k

The correction length for one corner is the essential
factor that enters into the determination of both the
capacitance and inductance of the line. Fig. 8 gives the
values of C;(g,b)/e=X/g as a function of b/g for the
case g=h. It is to be noted that when the two sides of
the inner conductor are short, the fringing capacitance
for one corner is dependent on the short side b as well as
on the spacings g and %. The case that b/g tends to in-
finity corresponds to a very thick inner conductor; then
the fringing capacitance for one corner becomes twice
that given in (6), and the correction length in (16) sim-

plifies to
2
X=g|:l——log 2]. 17
™
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B4
/

CORNER TO PERMITTIVITY
o
tn
e}

0.4 1.8 20

o_ o2 . 05 _ 08 10 12 T4 16
RATIO OF BREADTH OF INNER CONDUCTOR TO SPACING DISTANCE(E)

RATIO OF FRINGING CAPACITAN

Fig. 8—Radio of fringing capacitance to permittivity (Cy/€) as a
function of the ratio of breadth of inner conductor to spacing
distance (b/g).

The capacitance between the two conductors per unit
length of line 1s

w -+ b
.
4

and the inductance of the line is determined from the
equation

)+w@w, (18)

34

L=——" (19)
26 + w) + 4X

in which X is found from (16) or from Fig. 8. The char-
acteristic impedance of the line is as follows:

376.62

w-+ b 4Cs(g, I

2( > n (g, )

g €

For the line having the dimensions w=0.218, 5=0.050,
and g=A4=0.050 inch, the fringing capacitance found
from Fig. 8 is 4Cs(g,k) =4(0.5537¢) =2.215¢. The re-
sult calculated previously from the thick conductor

formula is 2.232¢, which is very close to the above exact
value.

(20

ohms.
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V. ArPROXIMATE FOrRMULAS FOR THIN
INNErR CONDUCTORS

The expressions for the determination of the ca-
pacitance of the rectangular lines having thin inner
conductors and unequal spacings contain complex
combinations of elliptic {unctions, and are very difficult
to evaluate in applications. It becomes necessary to
derive approximate formulas yielding capacitance and
inductance values of an accuracy comparable to those
obtained from Cockcroft’s exact solutions.

A. Tnner Conductor of Zero Thickness

Tae capacitance between the conductors in Fig. 9(a)
can be divided into three parts: 1) capacitance of paral-
lel-plate capacitors formed by the horizontal walls of
the conductors, 2) capacitance due to fringing flux lines
from each end of the inner conductor to the opposite
horizontal walls of the outer one, and 3) fringing ca-
pacitance caused by the presence of the lateral walls of
the outer conductor,

1l =
oL I

(a)
REGION SIMULATING THE RECTANGULAR LINE

Weanr

‘|‘2|g4<—— w—»f

|
AXIS OF SYMMETRY,~”
(GROUND POTENTIAL) ()

Fig. 9—(a) Rectangular line with inner conductor of zero thickness,
(b) rectangular line with inner conductor of finite thickness, and
(c) approximate field distribution in a shielded coupled-strip line
operating in the odd mode.

The first capacitance can be readily determined. In-
spection of Fig. 9(c) indicates that the disturbance of
flux I'nes close to the ends of the inner conductor is not
pronounced; consequently, the second item of capaci-
tance can be neglected. The effect of sidewalls present in
the outer conductor is the same as that obtained on the
addition of a series of plates similar to the inner con-
ductor spaced at 2g between their ends, as shown in
Fig. 9(c). The dotted lines are at the same potential as
the two infinite plates and can be taken to represent the
sidewalls of the rectangular line. From the character of
the flux distribution, it can be seen that because of the
sidewalls, the fringing capacitance equals that between
two coupled, odd-mode strips located midway between
two infinite parallel plates. Cohn® gives the capacitance

6 S. B. Cohn, “Shielded coupled-strip transmission line,” IRE
TraNS. oN MicrowavE THEORY AND TECHNIQUES, vol. MTT-3.
pp- 29-38; October, 1955.
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as follows:

C (o 2g> 2 (1+ thwg>
) =—1o coth—},
7 d b & d

where d is the spacing between the infinite plates. The
line capacitance is given by

(21)

dew 2 wg
C=—+4+ 4e[~log (1 -+ coth —-—)], (22)
d T d
and the characteristic impedance of the line is
376.62
Z = ohms, (23)

g2 02 <1+ thrg)]
l:d+7r0g o

If the dimensions of a rectangular line are w=0.300,
d=0.200, =0, and g=%=0.100 inch, the capacitance
as found from Fig. 8 becomes 6e-+4(0.46)¢="7.84¢,
whereas (22) gives C=06e+1.88¢="7.88e.

B. Inner Conductor of Finite Thickness

When the thickness of the inner conductor is appreci-
able, but is less than d/3, the line capacitance can be
determined by the method adopted for the case of the
infinitely thin inner conductor. However, the fringing
capacitance caused by the sidewalls should be corrected
for the finite thickness of the inner conductor in
Fig. 9(b).

Consider a semi-infinite plate of thickness b located
in the middle of two infinite parallel plates which are
separated at a distance d, as shown by Fig. 15(a) in
Appendix III. The semi-infinite plate is charged to a
potential 1, and the two infinite plates are at ground
potential. The fringing capacitance for one corner of the
semi-infinite plate as obtained by Thomson ig?

C_(b)_e[ ¢ -}
TG T R =
b(2d — b)
+ log ——— ] 24

If the thickness of the middle plate is reduced to zero,
the fringing capacitance at one corner is then expressed

by

2
CH(0) = “log 2 = 0.4407¢. (25)
T

When applied to the rectangular line, the fringing ca-
pacitance for each corner of the inner conductor can be

approximated by
20\ Cs(b/d
Cro (0’ _;) G/

b 2g _
cs (E’ 75) - ;(0) =
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plate and the correction factor for the thickness of the semi-
infinite plate.

The term Cy(b/d)/e along with the ratio Cy(b/d)/C;(0)
is plotted in Fig. 10 as a function of b/d. The complete
expressions for the line capacitance and characteristic
impedance are, respectively
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Fig. 11—Electric and magnetic fields in a rectangular
line with narrow inner conductor. .

VI. RECTANGULAR LINES WITH NARROW
INNER CONDUCTORS

When the flat inner conductor is not more than one-
quarter as wide as the outer conductor, the effect of the
presence of sidewalls may be ignored.” Thus, in Fig. 11,
the fringing field at each end of the inner conductor has
the same character as that occurring in a semi-infinite
plate situated between two infinite parallel plates. If
the rectangular line has a narrow inner conductor of
negligible thickness, the expression for characteristic
impedance, when (25) is used, should be the following:

1
ohms.

(29)
w 2
4e <7+ —10g2> v

T

When the inner conductor of the line has finite thick-
ness, then by using (24),

2d — b

ohms. (30)

c 4ew+4e|:d'1 2d — b
= — 0
d—b “ala—s % %
1 <1+ th”g>
0 cO —_—
b(Zd—b)] & -
d — b)? log 2 ’
Z:
4{ Y +1[ ‘<
W—p wld—p %
and
376.62
7 = ohms. (28)

4 [——w + iCfg <0, 5) Cf(b/d)]
d—b e i/ Cy0)

A rectangular line has the description, w=0.218,
b=0.050, d=0.150, and g=/=0.050 inch. Eqgs. (21),
(24)-(26) vyield, respectively, Cs(0, 2g/d)=0.526¢,
Cs(b/d) =0.839¢, C;(0)=0.4407¢, and C;(b/d, 2g/d)
=1,002¢. The total capacitance of the line is C=28.72¢
+4(1.002¢€) =12.728¢, compared with the previously ob-
tained results of 12.952¢ and 12.935¢ farads per meter.

A second line has the dimensions w=0.180, =0.030,
g=h=0.060 inch. The use of Fig. 8 gives the result:

C = 2(0.180 + 0.030)¢/0.060 + 4(0.548)e = 9.192e.

The preceding formulas give Cpo(0, 2g/d)=0.4954¢,
Ci(b/d) =0.694¢, C;(0)=0.4407¢, and C;(b/d, 2g/d)
=0.781e. These values give a total capacitance:

C = 2¢(0.180)/0.06 + 4(0.781)e = 9.124e.

b(2d — b)
;  Tloe (d—b)2:]}v

The capacitance and inductance of such lines can be
readily evaluated.

VII. InNErR CoNDUCTOR WITH ROUNDED CORNERS

In applications involving high voltages, the annular
space between the conductors may be subjected to high
electrical stress. The stress at the sharp corners of the
inner conductor can reach as much as six times the
mean value.’ To alleviate this stress concentration, the
edges of the inner conductor are rounded. Cockcroft has
treated the case when the spacings g and % are equal and
are small compared with conductor sides, and has found
that the electrical stress is considerably reduced by
rounding . the edges, but the change in capacitance is
insignificant. The fringing capacitance at one corner is
plotted in Fig. 12 in the form Cy/e, which is equivalent
to X/g. The fringing effect decreases with the increase
in the ratio of the radius of curvature R to the spacing
¢. The process of conformal representation for this case
is given in Appendix IV.

7R. H. T. Bates, “The characteristic impedance of the shielded
slab line,” IRE Trans. oN M1cROWAVE THEORY AND TECHNIQUES,
vol. MTT-4, pp. 28-33; January, 1956.
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Fig. 12—Fringing capacitance for one round corner to permittivity
as a function of the ratio of the corner radius to conductor
spacing.

The fictitious increase in length of the sides may be
utilized to calculate the capacitance and inductance of
the line as follows:

C=2w+ b+ 2X)/g, (31)

and

L = ug/Qw + 2b + 4X). (32)

The characteristic impedance can next be calculated
from (2).

APPENDIX I
L-SnarEp BEND

When the sides of the conductors are large compared
with the spacings between them, one quarter of the
cross section is to be considered. This portion of the
cross section then constitutes a right-angled bend as
shown in Fig. 13(a) and forms the polygon in the
z-plane bounded by the lines ABC and DEF, which are
maintained at potential ¥V and zero, respectively. It can
be assumed that t= — o« at a distant point on 4B,
t=—a at B, =0 at a distant point on B(, and =1 at
E. The internal angles of the polygon are 7/2 at B, zero
at C, and 3w/2 at E. The quantity ¢ has to be de-
termined from the geometry of the system. The
Schwarz-Christoffel transformation which turns the
boundary of the polygon into the real axis in the ¢ plane,
shown in Fig. 13(b), is

dz
— = A;,(t — DVt — 0)y7 (¢t — a)"V
dt

33)
The diagram in the w plane, shown in Fig. 13(c), con-
sists of the real axis and a line parallel to it. The internal
angle of the polygon is at =0, and is equal to zero. The
transformation which turns this diagram into the real
axis of the ¢ plane is

dw
— = Byt — 1)°(t — 0)~(¢t — @)°, (34)
dt
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Fig. 13—Conformal transformation of the L-shaped bend.

which, upon integration and use of the boundary con-
ditions, becomes

) 14
w=u-+ v =—1log i

(35)
™
To integrate (33), let
X = (@ — )2t — a)y712 (36)
and obtain
14+ X
z= — 24,(1/a)"? arc tan (a'2X) 4+ A,log % 37

in which point E is chosen as the origin in the z plane.
Consideration of the values of £ and X at point B leads
to the relations

h = 44171'(1/(1/)1/2, (]’L/g)ﬂ = 1/(1

Let P be a remote point on the line EF. The total charge
on the strip EP per unit length in the direction normal
to the plane of the paper is given by 3+*

8 = A17|", (38>

V
Qep = <~) e[log (a + 1) + 2(1/a)V? arc tan a*/*
™

2log 2 4 EP:\
— 21lo - — .
g A
If the flux lines were not disturbed, the charge on the
strip EP would be (EP)eV /g, which is the last term in
the preceding expression. The first three terms repre-
sent the excess charge caused by the flux disturbances.
When the excess charge is divided by 17 and the rela-
tions in (38) are used, the fringing capacitance Cp is
obtained as

€ g2+ n ( k) g ]
Chn=—|\1lo -— 4 2| — }arctan — }. 39
" i ‘> 8 4h? + g h (39)
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Similarly, the fringing capacitance associated with the
horizontal side Cr may be obtained from (39) by inter-
changing g and A.

AprpENDIX 11

RECTANGULAR LINE HavinGg THIN INNER CONDUCTOR

If the two sides of the rectangular line are short com-
pared with the conductor spacings, half of the cross
section shown in Fig. 14 should be considered. The ap-
propriate transformations are®

1 — )Lz dt
(1 — ka2 (1 — E?sna-?)
and
(e )
— ¢
: 1 ksh «
w =%+ jo =— log (41)

- 1 '
(e )
ksn

Here, k& is the modulus of elliptic functions, sn « is one of
the Jacobian elliptic functions, and « is a complex
quantity.

These transformations yield the line capacitance as

C = 4(AC + CD + X)/g farad per meter, (42)

in which X is the correction for the sides at one corner
resulting from the field distortion and is given by an
expression comprising elliptic and other higher func-
tions.

For the case a=K ~jK’, and for values of %k from 0.5
to unity, the equation for X reduces to (16), and g does
not differ substantially from 4. The fringing capacitance
at one corner has been plotted in Fig. 8 as a function of
b/¢ in the form

Cile = X/g. (43)

ApprENDIX III
SHIELDED SEMI-INFINITE PLATE

Fig. 15(a) shows a semi-infinite plate of finite thick-
ness and rectangular cross section placed midway be-
tween two infinite plates. The two parallel infinite
plates are at zero potential, and the semi-infinite plate
is at potential V. The values of ¢ chosen at the corners of
the z-plane polygon are indicated in Fig. 15, both (a) and
(b). The internal angles of the polygon are 0 when
t=+1, and 37/2 when ¢= +a. The differential equation
which transforms the boundary of the z diagram into the
real axis of the ¢ plane is®

dg
— = At + )2t — a)V2(t + 1)1 — 1)L

d (44

The diagram in the w plane consists of one straight
line and the two sides of another parallel line, as shown
in Fig. 15(c). The internal angles occur at points corre-
sponding to {= —1 and ¢=1 and are both zero. The
transformation which turns the diagram in the w plane
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Fig. 14—Transformation for half cross section
of a rectangular line.
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Fig. 15—Schwarz-Christoffel transformation for
shielded semi-infinite plate.

to the real axis in the ¢ plane is

dw
— = Byt + 1)L — 1)L (45)
dt

After (44) and (43) are integrated and the integration
constants are determined by application of the bound-
ary conditions, the fringing capacitance for one corner
of the semi-infinite plate is given by (24).

AprpENDIX IV
InnErR CoNDUCTOR WITH ROUNDED EDGES

The case considered is that of two coaxial rectangular
conductors, the edges of the inner conductor being
rounded. A potential difference 7 is maintained between
the conductors, each of which forms an equipotential
surface. The distances g and % are assumed to be small
compared with the sides AB and CD of Fig. 16(a), so
that the z-plane polygon consists of one corner, the
sides of which are assumed to extend to infinity. The
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Fig. 16—Conformal transformation of a rounded bend.

differential equation which transforms the polygon
ABCDEGA in the z plane to the upper half of the
¢ plane is®

s _ ¢+1)+m@it—1)

a = a)( = b
The two terms in the numerator have the effect of
turning the path of z through 90° as  in the £ plane of

Fig. 16(b) varies between —1 and 1. If the factor m
is chosen as

(46)

m = (br + 1/ (b — D7,

then the variation of the electric field intensity is uni-
form along the curved boundary BC.

It is necessary to put an electric field into the ¢ plane
such that from f= — o to {=a,, the horizontal line is at
one potential and the horizontal line from ¢=a; to
t=- o at another potential. This is accomplished by
opening up the two parallel lines in Fig. 16(c) to form
the two lines AD and EG in the £ plane. The transforma-
tion is

(47)

dw B1

dt i — a1

(48)

After integration and evaluation of the total charge
on the inner conductor as z takes infinite real and imagi-
nary values; that is, as f varies from — « to +a,, the
total charge per unit length is given by

B e7{(0/1 + X1 N (0D + le], (49

g h
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where 04 and OD are, respectively, half the depth and
half the width of the inner conductor. The expressions
for the correction lengths X; and X, have been derived
by Cockeroft, and the excess or fringing capacitance {or
one rounded corner is found from

-2+ [(2+3)

The most usual case is for g=%. Under this condition,

(50)

bl_“(ll—_bl—i—l a1+1

—_— = = = m?, 3
111—*1 bl——l b1~d1 ( )
and
g=h=7a(14+m). (52)
The radius of the round corner is given by
R = 2arctani — mlog T¢—'—; (53)

in which the expressions for f and ¢ are, respectively,

2 1/2 2 1/2
() e - (1)
by + 1 b —1

The expression for the total correction length and the
fringing capacitance for one rounded corner reduce to

1
X =27+ 4(m — 1) arc tan (—> — 2(1 4+ m) log 4
m

+ 2(1 + m) log 26, — 2m log (b1 + 1)
— 2log (by — 1), (54)
and

eX

8

Cr= (55)

The values of Cs/e=X/g are plotted in Fig. 12 as a
function of R/g. In general, when g is not equal to %, the
results are far more complex than those given by the
previous equations and the curved boundary at the
corner of the inner conductor does not assume a circular
form.
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